Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-153055

ABSTRACT

Type 1 neurofibromatosis is a common neurocutaneous syndrome with various common and uncommon associations. The present case represents an uncommon association of type 1 neurofibromatosis and pheochromocytoma, which is probably due to mutation of NF-1 gene.

2.
Endocrinology and Metabolism ; : 177-184, 2011.
Article in English | WPRIM | ID: wpr-121309

ABSTRACT

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant inherited disorders affecting the nervous system. NF1 is associated with mutations in the NF1 gene, which is located on chromosome sub-band 17q11.2 and contains 57 exons spanning approximately 300 kb of genomic DNA. NF1 is caused by a loss of function mutation of the NF1 gene, a tumor suppressor gene, which encodes for neurofibromin, a GTPase-activating protein (GAP) involved in the negative regulation of Ras activity. The GAP-related domain, which is encoded for by exons 20-27a, is one of the most important functional domains in neurofibromin. The cysteine-serine-rich domain has been recognized as an important functional domain in NF1-related pheochromocytomas. As the result of many genetic analyses of NF1-related pheochromocytomas, pheochromocytoma has generally been recognized as a true component of NF1. We recently experienced two families with NF1 accompanied by pheochromocytoma. The proband of family 1 is a 31-year-old female diagnosed with NF1 and pheochromocytoma. Gene analysis of the proband and her sister showed that the mutation of the NF1 gene (c.7907+1G>A) led to the skipping of exon 53 during NF1 mRNA splicing. The proband of family 2 is a 48-year-old male who was diagnosed with the same condition. Gene analysis demonstrated the mutation of the NF1 gene (c.5206-8C>G) with missplicing of exon 37. These novel germline mutations did not fall into the GAP-related nor the cysteine-serine-rich domains, but into the C-terminal area of the NF1 gene. This suggests that the correlation between the genotype and phenotype of NF1-related pheochromocytoma is somewhat difficult to characterize. Further studies will be necessary to confirm the function of the C-terminal area of the NF1 gene and its contribution to the development of NF1 and pheochromocytoma.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , DNA , Exons , Genes, Neurofibromatosis 1 , Genes, Tumor Suppressor , Genotype , Germ-Line Mutation , GTPase-Activating Proteins , Nervous System , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromin 1 , Phenotype , Pheochromocytoma , RNA, Messenger , Siblings
3.
Journal of Korean Medical Science ; : 107-112, 2006.
Article in English | WPRIM | ID: wpr-71344

ABSTRACT

Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders in humans. NF1 is caused by mutations in the NF1 gene which consists of 57 exons and encodes a GTPase activating protein (GAP), neurofibromin. To date, more than 640 different NF1 mutations have been identified and registered in the Human Gene Mutation Database (HGMD). In order to assess the NF1 mutational spectrum in Korean NF1 patients, we screened 23 unrelated Korean NF1 patients for mutations in the coding region and splice sites of the NF1 gene. We have identified 21 distinct NF1 mutations in 22 patients. The mutations included 10 single base substitutions (3 missense and 7 nonsense), 10 splice site mutations, and 1 single base deletion. Eight mutations have been previously identified and thirteen mutations were novel. The mutations are evenly distributed across exon 3 through intron 47 of the NF1 gene and no mutational hot spots were found. This analysis revealed a wide spectrum of NF1 mutations in Korean patients. A genotype- phenotype correlation analysis suggests that there is no clear relationship between specific NF1 mutations and clinical features of the disease.


Subject(s)
Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Middle Aged , DNA/chemistry , DNA Mutational Analysis , Genotype , Korea , Mutation , Neurofibromatosis 1/genetics , Neurofibromin 1/genetics , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL